The high mass end of the stellar mass function: Dependence on stellar population models and agreement between fits to the light profile
نویسندگان
چکیده
We quantify the systematic effects on the stellar mass function which arise from assumptions about the stellar population, as well as how one fits the light profiles of the most luminous galaxies at z ∼ 0.1. When comparing results from the literature, we are careful to separate out these effects. Our analysis shows that while systematics in the estimated comoving number density which arise from different treatments of the stellar population remain of order ≤ 0.5 dex, systematics in photometry are now about 0.1 dex, despite recent claims in the literature. Compared to these more recent analyses, previous work based on Sloan Digital Sky Survey (SDSS) pipeline photometry leads to underestimates of ρ∗(≥ M∗) by factors of 3 − 10 in the mass range 1011−1011.6M⊙, but up to a factor of 100 at higher stellar masses. This impacts studies which match massive galaxies to dark matter halos. Although systematics which arise from different treatments of the stellar population remain of order ≤ 0.5 dex, our finding that systematics in photometry now amount to only about 0.1 dex in the stellar mass density is a significant improvement with respect to a decade ago. Our results highlight the importance of using the same stellar population and photometric models whenever low and high redshift samples are compared.
منابع مشابه
Evaluation of New MOND Interpolating Function with Rotation Curves of Galaxies
The rotation curves of a sample of 46 low- and high-surface brightness galaxies are considered in the context of Milgrom's modi_ed dynamics (MOND) to test a new interpolating function proposed by Zhao et al. (2010) [1] and compare with the results of simple interpolating function. The predicted rotation curves are calculated from the total baryonic matter based on the B-band surface photometry,...
متن کاملThe effect of variation of stellar dispersion velocities by the galactic latitude in interpreting gravitational microlensing observations
Our galaxy is a spiral galaxy and its stars are mostly in a thin disk and rotate around the galactic center. The vertical component of the dispersion velocity of stars is a function of the galactic latitude and decreases with increasing it. In the galactic Besancon model, this dependence is ignored and they just consider the dependence of dispersion velocity on the stellar age. Becanson model i...
متن کاملScaling relations in dynamical evolution of star clusters
We have carried out a series of small scale collisional N-body calculations of single-mass star clusters to investigate the dependence of the lifetime of star clusters on their initial parameters. Our models move through an external galaxy potential with a logarithmic density profile and they are limited by a cut-off radius. In order to find scaling relations between the lifetime of star cluste...
متن کاملRelativistic Stellar Models with Quadratic Equation of State
In this paper, we have obtained and presented new relativistic stellar configurations considering an anisotropic fluid distribution with a charge distribution and a gravitational potential Z(x) that depends on an adjustable parameter. The quadratic equation of state based on Feroze and Siddiqui viewpoint is used for the matter distribution. The new solutions can be written in terms of elementar...
متن کاملStellar Populations in the Central Galaxies of Fossil Groups
It is inferred from the symmetrical and luminous X-ray emission of fossil groups that they are mature, relaxed galaxy systems. Cosmological simulations and observations focusing on their dark halo and inter-galactic medium properties confirm their early formation. Recent photometric observations suggest that, unlike the majority of non-fossil brightest group galaxies (BGGs), the central early-t...
متن کامل